

Anatoly B. Kolomeisky Department of Chemistry Center for Theoretical Biological Physics

COLLECTIVE DYNAMICS OF INTERACTING MOLECULAR MOTORS

Motor Proteins

Enzymes that convert the chemical energy into mechanical work

Functions: cell motility, cellular transport, cell division and growth, muscles, ...

Motor Proteins: Structure

Motor Proteins: Chemistry

Motor Proteins. Properties

- Non-equilibrium systems
- Velocities: $0.01-100 \mu m/s$ (for linear processive)
- Step Sizes: 0.3-40 nm; Forces: 1-60 pN
- Fuel: hydrolysis of ATP, polymerization
- Efficiency: 50-100% (!!!); Power like jet engine
- Directionality; Diversity
- Honda Accord:
- Efficiency of engine ~10%

Single Motor Proteins. Experiments

Single-Molecule Experiments:

Optical-trap spectrometry resonance energy transfer S. Block, S. Xie, J. Spudich, S. Weiss, C. Bustamante, S. Gross...

Motor Proteins. Experiments Single-Molecule Experiments:

FIONA-fluorescent imaging with onenanometer accuracy

Magnetic tweezers spectroscopy

P. Selvin, W.E. Morner, N. Sherer, D. Bensimon,...

Theories for Single Motor Proteins

The main goal of theoretical models is to provide a quantitative link between biochemical and mechanical/dynamic properties of molecular motors. 2 main theoretical approaches: 1) Continuum Ratchets; 2) Discrete-State Stochastic Models

Cellular Cargos Transport by Teams of Similar and/or Dissimilar Motor Proteins

Collective Motion of Motor Proteins

- Not much is known about collective motion of motor proteins:
- 1) Do motor proteins compete or collaborate?
- 2) What are the mechanisms of cooperative behavior?
- 3) <u>How interactions between</u> <u>molecular motors affect their</u> <u>dynamics?</u>

Intermolecular Interactions

W.H. Roos et al., Phys. Biol. 2008, 5, 046004

Dynamic clustering of kinesin molecules on microtubules (no ATP)

Interactions between 2 neighboring kinesin motors:

$$E_{\rm int} \sim 1.6 \ \rm k_B T - weak$$

attraction

See also: A. Vilfan et al., J. Mol. Biol. 2001, 312, 1011-1026

Intermolecular Interactions

I.A. Telly et al., Biophys. J. 2009, 96, 3341

A Static Obstacles

C

D

Single-Molecule imaging of kinesins motion in the presence of obstacles (other mutated kinesins)

obstacle	landing (µm min) ⁻¹	accessibility	event probability / step:		
			detach	pause	stop
none	1.01 [0.14]	100%	0.6%	0.4%	0.04%
T99N	0.32 (0.11)	32%	1.0%	1.0%	0.18%
wt	0.34 (0.03)	34%	1.8%	0.9%	0.13%

Interactions between 2 neighboring kinesin motors: weak repulsion

Sign of interactions – controversial!

no interactions

Local interactions due to the overlap of strain areas affected by microtubule-kinesin bindings

Theoretical Model

Intracellular Transport – quasi 1D microtubule network

Eukaryotic cell

Asymmetric Simple Exclusion Processes Applications: To investigate 1D multi-particle, cooperative phenomena in chemistry, physics and biology

Biological transport, polymerization, protein synthesis Gel electrophoresis, traffic problems, animal behavior, interface growth

Diffusion through biological channels, polymer dynamics

Asymmetric Simple Exclusion Processes

1D Lattice Gas Models with Hard-Core Exclusions

- •<u>Non-equilibrium process</u>
- Asymmetric Simple Exclusion Process (TASEP)
- •Particles enter from the left with rate $0 \le \alpha \le 1$ if the first site is unoccupied
- •Inside the lattice particles hop to the next site with rate 1 if there is no particle at this site hard-core exclusion
- •Particles leave from to the right with rate $0 \le \beta \le 1$

Exact Solutions of TASEP

Derrida *et al.*, *J. Phys. A: Math Gen.* **26** 1493 (1993), G. Schutz et al., *J. Stat. Phys.* (1992)

3) <u>Thermodynamically consistent</u> <u>rates of transitions</u>

Our Model: TASEP with Interactions

Our Model: TASEP with Interactions

$$q = e^{\beta \theta E}, r = e^{\beta (\theta - 1)E}$$

for E>0 (attraction) it is faster to create the cluster of particles (q>1, r<1), while for E<0 (repulsion) it is faster to break the cluster (q<1, r>1)

 $0 < \theta < 1$ - specifies how energy is distributed between forward and backward transitions

Methods: Simple Mean Field (SMF)

Occupation number $\mathcal{T}_i = -\begin{bmatrix} 1 & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$

$$<\tau_{i}\tau_{i+1}> = <\tau_{i}> <\tau_{i+1}>$$

$$\mathbf{P}(\tau_i | \tau_{i+1}) \sim \mathbf{P}(\tau_i) \times \mathbf{P}(\tau_{i+1})$$

All properties can be calculated analytically, but there are problems:

$$J_{MC} = \frac{1}{8} + \frac{r+q}{16} = \frac{1}{8} + \frac{e^{\beta\theta E} + e^{\beta(\theta-1)E}}{16}$$

Flux in the maximal-current phase at very large attractions or repulsions is diverging – **unphysical!** Zero or finite currents are expected!!!

Methods: Simple Mean Field (SMF)

Flux in the maximal-current phase at very large attractions or repulsions is diverging – **unphysical!** Zero or finite currents are expected!!!

Methods: Cluster Mean Field (CMF) CMF approach partially takes correlations into account **CMF** utilizes clusters with 2 lattice sites $< au_{i} au_{i+1}> \neq < au_{i}> < au_{i+1}>$ $\mathbf{P}(\mathbf{O}) \neq \mathbf{P}(\mathbf{O}) \neq \mathbf{P}(\mathbf{O}) \neq \mathbf{P}(\mathbf{O})$

CMF neglects correlations between different clusters:

Methods: Two-Cluster Mean-Field

 Our approach takes into account correlations (nearest-neighbor);

- 2) All results are analytical;
- Correct predictions in limiting cases;
- 4) Can be easily extended to more complex systems

Note that for very strong repulsions (E->- ∞) our system is identical to TASEP of non-interacting dimers

Methods: Two-Cluster Mean-Field

The probability of the sequence of *m* sites in the bulk is factorized into the product of two-site clusters probabilities normalized by single-site probabilities

$$P(\tau_{i}, \tau_{i+1}, \dots, \tau_{i+m-1}) = \frac{P(\tau_{i}, \tau_{i+1})P(\tau_{i+1}, \tau_{i+2})\dots P(\tau_{i+m-2}, \tau_{i+m-1})}{P(\tau_{i+1})P(\tau_{i+2})\dots P(\tau_{i+m-2})}$$

Example:

$$P(0,1,1,0) = \frac{P(0,1)P(1,1)P(1,0)}{P(1)P(1)}$$

Two-site and single-site probabilities are related:

P(1,0) + P(1,1) = P(1); P(0,0) + P(0,1) = P(0)

1) Similarly to **TASEP** without interactions, 3 phases: MC, HD and LD Theoretical 2) predictions agree semiquantitatively

LD phase dominates for repulsions, HD phase dominates for attractions

For E=0, we obtain C=0-nocorrelations, simple mean-field works

Physical meaning of C- how the presence of particle at the site *i* affects the occupation at the site i+1.

(b) $\theta = 0.25$

-15-10-5 0 5 10 15 20

Energy, k_BT

(d) $\theta = 1$

0 5 - 10 - 5 0 5 10 15 20

Energy, k_pT

Theory

0.1

Correlation functions

Maximal particle fluxes:

Question: why our theoretical approach, that takes into account some correlations, is successful only for repulsions and weak attractions?

- **Repulsions**: the presence of the particle at the site *i* leads to lower probability of finding the particle at the site i+1.
- Then the occupancy of the site i+2 is independent of the occupancy of the site i
- Correlations for E<0 are short-range and relatively weak!

- Attractions: the presence of the particle at the site i leads to a higher probability of finding the particle at the site i+1.
- Then the occupancy of the site i+2 depends on the occupancy of the site i

Correlations for E>0 are long-range and strong!

Dynamics of interacting molecular motors depends on how the interaction is split between the formation and breaking the clusters (symmetry of interactions)

Relevance for Real Motor Proteins?

Option #1 for θ<0.9: Kinesin is not optimized for the maximal flux but maybe for maximal sensitivity if attractions dominate?

Weak attractions for kinesins

Relevance for Real Motor Proteins?

Option #2 for 0.9 <θ<1: Kinesin might be optimized for the maximal flux if attractions dominate

Critical role of the parameter θ (symmetry of interactions)– must be determined from more microscopic measurements!

Relevance for Real Motor Proteins?

Option #3 for θ<0.9: Kinesin might be optimized for the maximal flux if they repel

The sign of interactions affects dynamics of motor proteins

Are Motor Proteins at the Stationary State?

- Dynamics of relaxation to the stationary state for interacting molecular motors
- We use the idea of domain wall (DW) as an object that separates different domains

$$V = \frac{J_{HD} - J_{LD}}{\rho_{HD} - \rho_{LD}}$$
 DW velocity
$$D = \frac{J_{HD} + J_{LD}}{2(\rho_{HD} - \rho_{LD})}$$
 DW diffusion
constant

Domain Wall

Relaxation time to the stationary state $T \sim 1/D$

Are Motor Proteins at the Stationary State?

theory

Computer simulations

For repulsions molecular motors relax faster to the stationary state than for attractions

More realistic description of motor proteins transport: motors can be viewed as oligomers occupying several sites on the lattice

- Motor proteins are viewed as interacting particles of size *l*>1. 4 possible types of transitions. Analysis using twocluster mean-field
- can be done.

$$(i) \qquad (i) \qquad (i-1) \qquad (i+1) \qquad (i+2) \qquad (i+l-1)(i+l) \qquad (i+l+1) \qquad (i+$$

$$q = e^{eta heta E}$$
, $r = e^{eta (heta - 1)E}$

Periodic boundary conditions with θ =0.5

Fundamental diagram changes its behavior for different interactions.

Periodic boundary conditions with E=-5kT and $\theta=0.5$

Symmetry arguments: at large repulsions the oligomers if size *l* with interactions behave like oligomers of size *l*+1 without interactions

Periodic boundary conditions with E=-5kT and $\theta=0.5$

Motion of particles of size *l* in one direction can be viewed as a motion of "holes" of size *l* in opposite direction

Maximal current in the system with open boundary conditions and θ =0.5

Flux decreases with the size *l*, but the maximal current still observed at weak repulsions

Phase diagram for E=-5 kT and $\theta=0.5$

3 phases (MC, LD and HD) are observed, and the range for MC increases with increasing size of oligomers. **Observation:** two-cluster mean-field theory works better for larger *l*.

Correlation functions for θ =0.5 *l*=2 *l*=5 *l*=10 Two-cluster theory works better for larger *l* because correlations decrease with *l*

Correlation function for *E=0 kT*

What is Better for Motor Proteins Supported Cellular Transport?

- We speculate that weak repulsive short-range are beneficial for collective behavior of motor proteins:
- 1) Transport is faster;
- 2) Robustness reaching faster the stationary state

CONCLUSIONS

- 1) Developed a new theoretical approach for analyzing multi-particle dynamics of interacting molecular motors
- 2) Investigated TASEP with interactions where transition rates are taken into account using proper thermodynamic arguments
- 3) Interactions induce correlations in the system. For repulsions correlations are weaker, while for attractions they are stronger and more long-ranged
- 4) Symmetry of interactions also influences dynamics
- 5) Relaxation to stationary states is faster for repulsive molecular motors.
- 6) The implications for the transport by motor proteins are discussed

COLLABORATORS:

- Arvind K. Gupta, Tripti Midha –IIT Ropar Hamid Teimouri – Rice University **PUBLICATIONS:**
- 1) J. Phys A.: Math. Theor, 48, 065001 (2015);
- 2) J. Stat. Mech. P04013 (2015);
- 3) J. Stat. Mech. P043205 (2018);
- 4) J. Stat. Mech. P053209 (2018);
- 5) J. Phys A.: Math. Theor, 52, 365001 (2019);
- 6) J. Stat. Mech. P083202 (2019);